4.5 Article

Consistency of local and astrophysical tests of the stability of fundamental constants

期刊

PHYSICS OF THE DARK UNIVERSE
卷 25, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.dark.2019.100301

关键词

Cosmology; Varying fundamental constants; Unification scenarios; Astrophysical observations; Atomic clocks

资金

  1. FEDER Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 -Operacional Programme for Competitiveness and Internationalization (POCI)
  2. FCT-Fundacao para a Ciencia e a Tecnologia [POCI-01-0145-FEDER-028987]
  3. Programa Joves i Ciencia - Fundacio Catalunya-La Pedrera (Spain)

向作者/读者索取更多资源

Tests of the stability of nature's fundamental constants are one of the cornerstones of the ongoing search for the new physics which is required to explain the recent acceleration of the universe. The two main settings for these tests are high-resolution spectroscopy of astrophysical systems (mainly in low-density absorption clouds along the line of sight of bright quasars) and laboratory comparisons of pairs of atomic clocks. Here we use standard chi-square techniques to perform a global analysis of all currently available data, studying both the consistency of tests of stability of different constants (specifically the fine-structure constant alpha, the proton-to-electron mass ratio mu and the proton gyromagnetic ratio g(p)) and the consistency between local laboratory and astrophysical tests. We start by doing a model-independent analysis (studying the internal consistency of the various available datasets) but also explore specific phenomenological models motivated by string theory and grand unification. Overall there is weak (one to two sigma) evidence of variations, at the level of up to a few parts per million, and reasonable agreement between laboratory and astrophysical tests. This result holds even if one removes from the analysis the Webb et al. archival dataset of alpha measurements. Forthcoming astrophysical facilities, such as the ESPRESSO spectrograph, should be able to confirm or rule out these hints. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据