4.7 Article

Novel Polyvinyl Alcohol (PVA)/Cellulose Nanocrystal (CNC) Supramolecular Composite Hydrogels: Preparation and Application as Soil Conditioners

期刊

NANOMATERIALS
卷 9, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/nano9101397

关键词

cellulose nanocrystal; polyvinyl alcohol; supramolecular interactions; soil conditioner; properties

资金

  1. Capacity Building Project of Some Local Colleges and Universities in Shanghai [17030501200]
  2. National Natural Science Funds [51873103]
  3. Scientific and Technological Support Projects in the Field of Biomedicine [19441901700]
  4. Talent Program of Shanghai University of Engineering Science [2017RC422017]
  5. First-rate Discipline Construction of Applied Chemistry [2018xk-B-06]

向作者/读者索取更多资源

In this work, cellulose nanocrystal (CNC) was modified by an ureido-pyrimidinone (UPy) system based on quadruple hydrogen bondings, and CNC-UPy was obtained. Then, this powder was added into polyvinyl alcohol (PVA), and PVA/CNC-UPy composite membranes and hydrogels were prepared. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), polarizing optical microscopy (POM) and particle size distribution (PSD) were used to characterize CNC-UPy. From the FTIR results, the characteristic peaks of NCO group sat 2270 cm(-1) disappeared, indicating the successful synthesis of CNC-UPy. XRD results showed that the modification by UPy may change the structure of CNC and its degree of crystallinity was increased. PSD analysis showed that the particle size of CNC was increased and its size distribution became narrower after modification by UPy groups. The structure and properties of the composite membranes and hydrogels were studied by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) together with investigation of swelling, sustained release and self-healing performances. DSC curves depicted that the glass transition temperature, T-g, of different PVA membranes was increased with addition of different proportions of CNC-UPy. TGA data showed that the temperature of maximum weight loss rate was increased, which illustrated the enhanced thermal stability of PVA/CNC-UPy composites. Meanwhile, it was also revealed that the PVA/CNC-UPy composite hydrogels possess good self-healing and better sustained release behavior for the soil conditioner, fulvic acid (FA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据