4.7 Article

Fabrication of Bimetal CuFe2O4 Oxide Redox-Active Nanocatalyst for Oxidation of Pinene to Renewable Aroma Oxygenates

期刊

NANOMATERIALS
卷 9, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/nano9081140

关键词

selective oxidation; copper oxide; iron oxide; nanoparticles; biomass; pinene

资金

  1. CSIR [T#18/2016-2019]
  2. CSIR parliamentary grant [HGER46s/2018-2019]

向作者/读者索取更多资源

This study report on the synthesis of spinel CuFe2O4 nanostructures by surfactant-assisted method. The catalysts were characterized by X-ray diffraction (XRD), laser Raman, transition electron microscope (TEM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), hydrogen temperature programmed reduction (H-2-TPR), and Brunauer-Teller-Emmett-Teller (BET) surface area techniques. CuFe2O4 was active for pinene oxidation using tertiary butyl hydroperoxide (TBHP) to pinene oxide, verbenol, and verbenone aroma oxygenates. Under optimized reaction conditions, the spinel CuFe2O4 catalyst could afford 80% pinene conversion at a combined verbenol/verbenone selectivity of 76% within the reaction time of 20 h. The changes in catalyst synthesis solvent composition ratios induced significantly varying redox, phases, and textural structure features, which resulted in various catalytic enhancement effect. Characterization results showed the spinel CuFe2O4 catalyst possessing less than 5 wt% impurity phases, Cu(OH)(2), and CuO to afford the best catalytic performance. The CuFe2O4 catalyst was recyclable to up to five reaction cycles without loss of its activity. The recyclability of the bimetal CuFe2O4 oxide catalyst was simply rendered by use of an external magnet to separate it from the liquid solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据