4.3 Article

Performance of BCC-CSM Models with Different Horizontal Resolutions in Simulating Extreme Climate Events in China

期刊

JOURNAL OF METEOROLOGICAL RESEARCH
卷 33, 期 4, 页码 720-733

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13351-019-8159-1

关键词

extreme climate events; BCC-CSM; evaluation; projections

资金

  1. National Key Research and Development Program of China [2016YFE0102404]
  2. National Natural Science Foundation of China [41875111, CMAYBY2018-062, CMAYBY2019-096]
  3. Project for Construction of Chongqing

向作者/读者索取更多资源

In this study, the performance of the Beijing Climate Center (BCC) Climate System Model version 1.1 (BCC-CSM1.1) (280-km resolution) and the BCC-CSM1.1m (110-km resolution) in simulating extreme climate events over China in the last 40 years is compared. Both models capture the main spatial distribution features of heavy precipitation (R95T), the number of consecutive wet days (CWD), the annual count of days with precipitation mm (R1), the maximum consecutive 5-day precipitation (Rx5), and the numbers of frost days (FD) and summer days (SU). The BCC-CSM1.1m has a better ability to simulate the detailed distribution of extreme climate events than the BCC-CSM1.1, including R95T, CWD, R1, and the simple precipitation intensity index (SDII). However, the BCC-CSM1.1m does not show an improvement in simulating the number of days with extreme precipitation (R90N), the number of consecutive dry days (CDD), the heat wave duration index (HWDI), the warm day frequency (TX90P), and cold night frequency (TN10P). This indicates that the simulation of the R95T, CWD, R1, and SDII climate events is more sensitive to the resolution of the model. The improved BCC-CSM1.1m is used to explore the projection of extreme climate change in China during the 21st century under the RCP4.5 (Representative Concentration Pathways) and RCP8.5 scenarios. The results show that extreme precipitation will increase dramatically over North and Southwest China in the late 21st century. The CWD index will decrease on the Tibetan Plateau and in northeastern and central China and will increase in other parts of China; R1 will increase in northern China and decrease in southern China; Rx5 will increase dramatically in southern China; FD will decrease and SU will increase over China in the late 21st century under both emission scenarios, with larger amplitudes in RCP8.5.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据