4.6 Article

Revealing Antidepressant Mechanisms of Baicalin in Hypothalamus Through Systems Approaches in Corticosterone-Induced Depressed Mice

期刊

FRONTIERS IN NEUROSCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnins.2019.00834

关键词

baicalin; hypothalamus; proteomics; depression; glucocorticoid receptor

资金

  1. Project of National Natural Science Foundation of China [81803508]
  2. Doctoral Scientific Research Foundation of Liaoning Province [20170520193]
  3. Young and Middle-Aged Teachers' Career Development Project of Shenyang Pharmaceutical University [ZQN2016022]

向作者/读者索取更多资源

Baicalin, the main active flavonoid constituent of Scutellaria baicalensis Georgi, has been reported to exert antidepressant effects. Hypothalamic-pituitary-adrenal (HPA) axis plays important roles in depression. However, antidepressant effect and mechanism of baicalin on HPA axis in hypothalamus are still unknown. In present study, we find baicalin significantly attenuates the increase of immobility time in tail suspension and forced swimming, improves the decrease of spending time in open arms, and restores the aberrant negative feedback of HPA axis in chronic corticosterone (CORT)-induced depressed mice. Moreover, proteomics finds 370 differentially expressed proteins after baicalin treatment, including 114 up-regulation and 256 down-regulation in hypothalamus. Systems biology analysis indicates the functions of differentially expressed proteins focus on phosphoserine binding and phosphorylation, especially participate in GR signaling pathway. Finally, our findings demonstrate that baicalin normalizes hypothalamic GR nuclear translocation via reducing GR phosphorylation to remodel negative feedback of HPA axis in CORT-induced mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据