4.6 Article

Increasing Sustainability of Residential Areas Using Rain Gardens to Improve Pollutant Capture, Biodiversity and Ecosystem Resilience

期刊

SUSTAINABILITY
卷 11, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/su11123269

关键词

rain gardens; bioretention; monoculture; polyculture; substrate; phosphorus; low impact development; green infrastructure

资金

  1. Alabama Agricultural Experiment Station, Auburn University, Auburn, AL, USA

向作者/读者索取更多资源

Rain gardens have become a widespread stormwater practice in the United States, and their use is poised to continue expanding as they are an aesthetically pleasing way to improve the quality of stormwater runoff. The terms rain garden and bioretention, are now often used interchangeably to denote a landscape area that treats stormwater runoff. Rain gardens are an effective, attractive, and sustainable stormwater management solution for residential areas and urban green spaces. They can restore the hydrologic function of urban landscapes and capture stormwater runoff pollutants, such as phosphorus (P), a main pollutant in urban cities and residential neighborhoods. Although design considerations such as size, substrate depth, substrate type, and stormwater holding time have been rigorously tested, little research has been conducted on the living portion of rain gardens. This paper reviews two studies-one that evaluated the effects of flooding and drought tolerance on the physiological responses of native plant species recommended for use in rain gardens, and another that evaluated P removal in monoculture and polyculture rain garden plantings. In the second study, plants and substrate were evaluated for their ability to retain P, a typical water pollutant. Although plant growth across species was sometimes lower when exposed to repeated flooding, plant visual quality was generally not compromised. Although plant selection was limited to species native to the southeastern U.S., some findings may be translated regardless of region. Plant tissue P was higher than either leachate or substrate, indicating the critical role plants play in P accumulation and removal. Additionally, polyculture plantings had the lowest leachate P, suggesting a polyculture planting may be more effective in preventing excess P from entering waterways from bioretention gardens. The findings included that, although monoculture plantings are common in bioretention gardens, polyculture plantings can improve biodiversity, ecosystem resilience, and rain garden functionality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据