4.8 Article

Hand clapping inspired integrated multilayer hybrid nanogenerator as a wearable and universal power source for portable electronics

期刊

NANO ENERGY
卷 63, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2019.06.012

关键词

Clapping inspired; Anodic aluminum oxide; Multilayer structure; Coupling effect; Power management; Wearable nanogenerator

资金

  1. Bio & Medical Technology Development Program of the NRF - Korean government (MSIT) [NRF-2017M3A9F1031270]
  2. Technology Innovation Program - Ministry of Trade, Industry & Energy (MI, Korea) [10053023]

向作者/读者索取更多资源

We report a human skin-based wearable and hybrid triboelectric-piezoelectric nanogenerator (HTEPENG) for harvesting biomechanical energy from hand clapping to eliminate the need for batteries to drive portable electronic devices. Through smart integration of polyimide encapsulated polarized polyvinylidene fluoride (PVDF) film between two nanopillar polydimethylsiloxane (n-PDMS) films, the hybrid nanogenerator can produce two triboelectric outputs and one piezoelectric output simultaneously upon a single clap. The output performances of the HTEPENG have been optimized through systematic analysis and experimental validation of the surface morphology and coupling effect of interfacing materials. The as-fabricated HTEPENG device delivers a peak power density of 3.7 W/m(2) at a matched resistance of 23.08 M Omega. After the use of a custom-designed power conversion and management system (PCMS), the nanogenerator was able to drive a commercial pedometer and successfully recharged a trimmer, pocket Wi-Fi router, and smartphone individually, which might speed up commercialization of the wearable nanogenerators. Furthermore, the HTEPENG possesses a unique characteristic of modulated multi-level outputs, which has the potential to bring extensive application prospects in the field of logic devices, power supply, prosthetics, antistatic protection, and self-powered sensor networks. Even though clapping is a natural human activity to applaud somebody which is very common in many environments like a concert, theatre, and stadium, it is also well known to improve the overall human health by improving the blood circulation to various organs. Thereby, other than serving as a universal power source, the proposed hybrid nanogenerator can promote additional health benefit for the human.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据