4.6 Article

Positioning Error Analysis and Control of a Piezo-Driven 6-DOF Micro-Positioner

期刊

MICROMACHINES
卷 10, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/mi10080542

关键词

compliant mechanism; positioning error model; hysteresis nonlinearity; control compensation; micro-positioner

资金

  1. National Natural Science Foundation of China [51675060]
  2. Fundamental Research Funds for the Central Universities [106112017CDJPT280002]

向作者/读者索取更多资源

This paper presents a positioning error model and a control compensation scheme for a six-degree-of-freedom (6-DOF) micro-positioner based on a compliant mechanism and piezoelectric actuators (PZT). The positioning error model is established by means of the kinematic model of the compliant mechanism and complete differential coefficient theory, which includes the relationships between three typical errors (hysteresis, machining and measuring errors) and the total positioning error. The quantitative analysis of three errors is demonstrated through several experimental studies. Afterwards, an inverse Presiach model-based feedforward compensation of the hysteresis nonlinearity is employed by the control scheme, combined with a proportional-integral-derivative (PID) feedback controller for the compensation of machining and measuring errors. Moreover, a back propagation neural network PID (BP-PID) controller and a cerebellar model articulation controller neural network PID (CMAC-PID) controller are also adopted and compared to obtain optimal control. Taking the translational motion along the X axis as an example, the positioning errors are sharply reduced by the inverse hysteresis model with the maximum error of 12.76% and a root-mean-square error of 4.09%. In combination with the CMAC-PID controller, the errors are decreased to 0.63% and 0.23%, respectively. Hence, simulated and experimental results reveal that the proposed approach can improve the positioning accuracy of 6-DOF for the micro-positioner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据