4.7 Article

3-(2-Oxo-2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one (compound 1), a novel potent Nrf2/ARE inducer, protects against DSS-induced colitis via inhibiting NLRP3 inflammasome

期刊

BIOCHEMICAL PHARMACOLOGY
卷 101, 期 -, 页码 71-86

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2015.11.015

关键词

Nrf2; NLRP3 inflammasome; DSS; Inflammatory bowel disease; ROS

资金

  1. Key Program [81230078]
  2. Youth Foundation [81202611]
  3. National Natural Science Foundation of China [30801410, 81372268, 91129732, 81173087]
  4. Program of State Key Laboratory of Natural Medicines, China Pharmaceutical University [SKLNMZZCX201405]
  5. Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province [BK20130026]
  6. Program for Jiangsu Province Innovative Research Team

向作者/读者索取更多资源

NLRP3 inflammasome is a key component of the inflammatory process and its dysregulation contributes to IBD for its ability to induce IL-1 beta release. Previously, we reported that a novel small molecular activator of Nrf2, 3-(2-oxo-2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino-[2,1-a]isoquinolin-4(11bH)-one (compound 1) can prevent the development of colorectal adenomas in AOM-DSS models. Here we further investigated the anti-inflammatory effect of compound 1 in DSS-induced colitis in C57BL/6 and NLRP3(-/-) mice, and revealed the possible modulation by compound 1 of NLRP3 inflammasome-mediated IL-1 beta release from macrophages. In C57BL/6 mice, oral administration of compound 1 significantly attenuated DSS-induced colonic pathological damage, remarkably inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and IL-1 beta secretion in colons. In contrast, mice deficient for NLRP3 were less sensitive to DSS-induced acute colitis, and compound 1 treatment exerted no protective effect on DSS-induced intestinal inflammation in NLRP3(-/-) mice. The protective effect of compound 1 may be attributed to its inhibition of NLRP3 inflammasome and Nrf2 activation in colons. Furthermore, compound 1, as a small molecular activator of Nrf2, significantly inhibited NLRP3 inflammasome activation in both THP-1 derived macrophages and bone-marrow derived macrophages, as indicated by reduced expression of NLRP3 and cleaved caspase-1, and lowered IL-1 beta secretion. Finally, compound 1 induced NLRP3 inflammasome inhibition is through blocking NLRP3 priming step and dependent on Nrf2 activation. Taken together, our findings demonstrate that compound 1 might be a potential agent for the treatment of IBD by targeting Nrf2 and NLRP3 inflammasome. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据