4.4 Article

Correlations far from equilibrium in charged strongly coupled fluids subjected to a strong magnetic field

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 9, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP09(2019)072

关键词

AdS-CFT Correspondence; Holography and condensed matter physics (AdS/CMT); Holography and quark-gluon plasmas; Quark-Gluon Plasma

资金

  1. U.S. Department of Energy [DE-SC-0012447]

向作者/读者索取更多资源

Within a holographic model, we calculate the time evolution of 2-point and 1-point correlation functions (of selected operators) within a charged strongly coupled system of many particles. That system is thermalizing from an anisotropic initial charged state far from equilibrium towards equilibrium while subjected to a constant external magnetic field. One main result is that thermalization times for 2-point functions are significantly (approximately three times) larger than those of 1-point functions. Magnetic field and charge amplify this difference, generally increasing thermalization times. However, there is also a competition of scales between charge density, magnetic field, and initial anisotropy, which leads to an array of qualitative changes on the 2- and 1-point functions. There appears to be a strong effect of the medium on 2-point functions at early times, but approximately none at later times. At strong magnetic fields, an apparently universal thermalization time emerges, at which all 2-point functions appear to thermalize regardless of any other scale in the system. Hence, this time scale is referred to as saturation time scale. As extremality is approached in the purely charged case, 2- and 1-point functions appear to equilibrate at infinitely late time. We also compute 2-point functions of charged operators. Our results can be taken to model thermalization in heavy ion collisions, or thermalization in selected condensed matter systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据