4.7 Article

Machine Learning-Based Anomaly Detection for Load Forecasting Under Cyberattacks

期刊

IEEE TRANSACTIONS ON SMART GRID
卷 10, 期 5, 页码 5724-5734

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSG.2018.2890809

关键词

Anomaly detection; cyberattack; dynamic programming; load forecasting; machine learning

向作者/读者索取更多资源

Accurate load forecasting can create both economic and reliability benefits for power system operators. However, the cyberattack on load forecasting may mislead operators to make unsuitable operational decisions for the electricity delivery. To effectively and accurately detect these cyberattacks, this paper develops a machine learning-based anomaly detection (MLAD) methodology. First, load forecasts provided by neural networks are used to reconstruct the benchmark and scaling data by using the k-means clustering. Second, the cyberattack template is estimated by the naive Bayes classification based on the cumulative distribution function and statistical features of the scaling data. Finally, the dynamic programming is utilized to calculate both the occurrence and parameter of one cyberattack on load forecasting data. A widely used symbolic aggregation approximation method is compared with the developed MLAD method. Numerical simulations on the publicly load data show that the MLAD method can effectively detect cyberattacks for load forecasting data with relatively high accuracy. Also, the robustness of MLAD is verified by thousands of attack scenarios based on Monte Carlo simulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据