4.5 Article

Vegetation mapping to support greater sage-grouse habitat monitoring and management: multi- or univariate approach?

期刊

ECOSPHERE
卷 10, 期 8, 页码 -

出版社

WILEY
DOI: 10.1002/ecs2.2838

关键词

greater sage-grouse; habitat mapping; nearest neighbor imputation; random forest; sage steppe; southeast Oregon

类别

资金

  1. Northwest Climate Science Center [G12AC20453]
  2. USDA Forest Service
  3. Oregon State University
  4. BLM [L11AS00083]
  5. BLM OR/WA CESU Sage Grouse Habitat Monitoring and Assessment [L16AC00091]

向作者/读者索取更多资源

Conservation planning for wildlife species requires mapping and assessment of habitat suitability across broad areas, often relying on a diverse suite, or stack, of geospatial data presenting multidimensional controls on a species. Stacks of univariate, independently developed vegetation layers may not represent relationships between each variable that can be characterized by multivariate modeling techniques, leading to inaccurate inferences on the distribution of suitable habitat. In this paper, we examine the role of variable combining in mapping multiple dimensions of greater sage-grouse (Centrocercus urophasianus, GRSG) habitat as a basis for GRSG conservation in the great basin ecoregion within southeastern Oregon. We compare two modeling approaches: a univariate random forest regression model (RF regression) and a multivariate random forest nearest neighbor (RFNN) imputation model , across an array of variables. These include five GRSG habitat descriptor variables: percent cover of trees, juniper, sagebrush, and GRSG food forbs, and the proportion of grasses that are exotic annuals. We also model species distributions of 51 common species in the sage steppe and combine these predictions to estimate alpha diversity. Our results show that RF regression and RFNN can yield univariate predictions with similar performance, but RF regression predictions tend to contain slightly more bias at broader spatial scales. Stacking univariate predictions from RF regression yields covariance errors that manifest as logical errors (juniper cover > tree cover), biases in estimates of GRSG habitat area, and biases in estimates of alpha diversity. Combining variables from the RFNN model does not introduce covariance errors. We conclude that multivariate modeling approaches are better suited to map multidimensional habitat niches at broader spatial scales, and also better suited to provide information for defining multivariable adaptive management triggers at the population level or above.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据