4.6 Review

Leveraging of MEMS Technologies for Optical Metamaterials Applications

期刊

ADVANCED OPTICAL MATERIALS
卷 8, 期 3, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.201900653

关键词

infrared detectors; metamaterials; micro; nanofluidics; microelectromechanical system; terahertz devices

资金

  1. National University of Singapore (NUS), Singapore [NRF-CRP15-2015-02]
  2. NUS, Singapore [NRF2015-NRF-ISF001-2620]
  3. RIE Advanced Manufacturing and Engineering (AME) programmatic grant Nanosystems at the Edge at NUS, Singapore [A18A5b0056, A18A4b0055]

向作者/读者索取更多资源

Tunable metamaterial devices have experienced explosive growth in the past decades, driving the traditional electromagnetic (EM) devices to evolve into diversified functionalities by manipulating EM properties such as amplitude, frequency, phase, polarization, and propagation direction. However, one of the bottlenecks of these rapidly developed metamaterials technologies is limited tunability caused by the intrinsic frequency-dependent property of exotic tunable material. To overcome such limitation, the microelectromechanical system (MEMS) enabling micro/nanoscale manipulation is developed to actively control meta-atom in terahertz and infrared region, which brings frequency-scalable tunability and complementary metal-oxide-semiconductor-compatible functional meta-devices. Beyond tunability, novel chemical sensing platforms of molecular identification and dynamic monitoring of the biochemical process can be achieved by integrating micro/nanofluidics channels with metamaterial resonators. Additionally, incorporating metamaterial absorbers with MEMS resonators brings another research interest in MEMS zero-power devices and radiation sensors. Furthermore, moving from 2D metasurfaces to 3D metamaterials, enhanced EM properties like novel resonance mode, giant chirality, and 3D manipulation reinforce the application in biochemical and physical sensors as well as functional meta-devices, paving the way to realize multi-functional sensing and signal processing on a hybrid smart-sensor microsystem for booming healthcare, environmental monitoring, and the Internet of Things applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据