4.6 Article

Enhancement of Hydrogen Desorption from Nanocomposite Prepared by Ball Milling MgH2 with In Situ Aerosol Spraying LiBH4

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 7, 期 17, 页码 15064-15072

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.9b03724

关键词

hydrogen storage materials; LiBH4; MgH2; BMAS; thermodynamics; kinetics

资金

  1. U.S. National Science Foundation (NSF) [CMMI-1261782]

向作者/读者索取更多资源

The prospect of LiBH4 + MgH2 mixtures has been limited by their sluggish kinetics despite their excellent hydrogen storage capacity theoretically. This study demonstrates that ball milling with aerosol spraying (BMAS) established in the previous study can not only tune the thermodynamics but also improve the kinetics for hydrogen release from a LiBH4 + MgH2 mixture. The improved thermodynamics has been evaluated from the viewpoint of the significantly heightened dissociation pressure. Nine different kinetics models have been used to analyze the solid-state dehydrogenation behavior of the BMAS powder with 50% LiBH4 at 265 degrees C. The kinetics analysis reveals that the rate-limiting step of this BMAS powder is initially controlled by the nucleation/growth process but then is changed to moving-phase boundary control and finally to diffusion control as the number of dehydrogenation/rehydrogenation cycles increases. The change in the dehydrogenation kinetics with increasing cycles has been attributed to the presence of three parallel dehydrogenation reaction pathways and their different contributions to the overall H-2 release as the number of cycles increases. Thermal analysis indicates that the apparent activation energy of the BMAS powder has been reduced by 23.3 and 30.6 kJ/mol when compared to that of bulk LiBH4 and ball-milled MgH2 + C mixtures, respectively, revealing that BMAS is an effective method to promote hydrogen release from LiBH4 + MgH2 mixtures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据