4.6 Article

Estimation of Base Flow by Optimal Hydrograph Separation for the Conterminous United States and Implications for National-Extent Hydrologic Models

期刊

WATER
卷 11, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/w11081629

关键词

computational methods; hydrologic modeling; hydrograph separation; groundwater hydrology; surface water-groundwater interactions; base flow; water supply

向作者/读者索取更多资源

Optimal hydrograph separation (OHS) uses a two-parameter recursive digital filter that applies specific conductance mass-balance constraints to estimate the base flow contribution to total streamflow at stream gages where discharge and specific conductance are measured. OHS was applied to U.S. Geological Survey (USGS) stream gages across the conterminous United States to examine the range/distribution of base flow inputs and the utility of this method to build a hydrologic model calibration dataset. OHS models with acceptable goodness-of-fit criteria were insensitive to drainage area, stream density, watershed slope, elevation, agricultural or perennial snow/ice land cover, average annual precipitation, runoff, or evapotranspiration, implying that OHS results are a viable calibration dataset applicable in diverse watersheds. OHS-estimated base flow contribution was compared to base flow-like model components from the USGS National Hydrologic Model Infrastructure run with the Precipitation-Runoff Modeling System (NHM-PRMS). The NHM-PRMS variable gwres_flow is most conceptually like a base flow component of streamflow but the gwres_flow contribution to total streamflow is generally smaller than the OHS-estimated base flow contribution. The NHM-PRMS variable slow_flow, added to gwres_flow, produced similar or greater estimates of base flow contributions to total streamflow than the OHS-estimated base flow contribution but was dependent on the total flow magnitude.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据