4.7 Article

Rational Construction of Hierarchically Porous Fe-Co/N-Doped Carbon/rGO Composites for Broadband Microwave Absorption

期刊

NANO-MICRO LETTERS
卷 11, 期 1, 页码 -

出版社

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-019-0307-8

关键词

Fe-doped Co-MOF; Hierarchically porous; rGO; Broadband; Microwave absorption performance

资金

  1. National Natural Science Foundation of China [21376029]
  2. Analysis & Testing Center, Beijing Institute of Technology
  3. Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology

向作者/读者索取更多资源

Developing lightweight and broadband microwave absorbers for dealing with serious electromagnetic radiation pollution is a great challenge. Here, a novel Fe-Co/N-doped carbon/reduced graphene oxide (Fe-Co/NC/rGO) composite with hierarchically porous structure was designed and synthetized by in situ growth of Fe-doped Co-based metal organic frameworks (Co-MOF) on the sheets of porous cocoon-like rGO followed by calcination. The Fe-Co/NC composites are homogeneously distributed on the sheets of porous rGO. The Fe-Co/NC/rGO composite with multiple components (Fe/Co/NC/rGO) causes magnetic loss, dielectric loss, resistance loss, interfacial polarization, and good impedance matching. The hierarchically porous structure of the Fe-Co/NC/rGO enhances the multiple reflections and scattering of microwaves. Compared with the Co/NC and Fe-Co/NC, the hierarchically porous Fe-Co/NC/rGO composite exhibits much better microwave absorption performances due to the rational composition and porous structural design. Its minimum reflection loss (RLmin) reaches - 43.26 dB at 11.28 GHz with a thickness of 2.5 mm, and the effective absorption frequency (RL <= - 10 dB) is up to 9.12 GHz (8.88-18 GHz) with the same thickness of 2.5 mm. Moreover, the widest effective bandwidth of 9.29 GHz occurs at a thickness of 2.63 mm. This work provides a lightweight and broadband microwave absorbing material while offering a new idea to design excellent microwave absorbers with multicomponent and hierarchically porous structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据