4.3 Article

Health Risk and Resilience Assessment with Respect to the Main Air Pollutants in Sichuan

出版社

MDPI
DOI: 10.3390/ijerph16152796

关键词

air pollutants; health risk assessment; health resilience assessment; spatial inequality analysis

资金

  1. Strategic Priority Research Program of Chinese Academy of Sciences [XDA20030302]
  2. Science and Technology Project of Xizang Autonomous Region [XZ201901-GA-07]
  3. Open Subject of Big Data Institute of Digital Natural Disaster Monitoring in Fujian [NDMBD2018003]
  4. Southwest Petroleum University of Science and Technology Innovation Team Projects [2017CXTD09]
  5. National Flash Flood Investigation and Evaluation Project [SHZH-IWHR-57]

向作者/读者索取更多资源

Rapid urbanization and industrialization in developing countries have caused an increase in air pollutant concentrations, and this has attracted public concern due to the resulting harmful effects to health. Here we present, through the spatial-temporal characteristics of six criteria air pollutants (PM2.5, PM10, SO2, NO2, CO, and O-3) in Sichuan, a human health risk assessment framework conducted to evaluate the health risk of different age groups caused by ambient air pollutants. Public health resilience was evaluated with respect to the risk resulting from ambient air pollutants, and a spatial inequality analysis between the risk caused by ambient air pollutants and hospital density in Sichuan was performed based on the Lorenz curve and Gini coefficient. The results indicated that high concentrations of PM2.5 (47.7 mu g m(-3)) and PM10 (75.9 mu g m(-3)) were observed in the Sichuan Basin; these two air pollutants posed a high risk to infants. The high risk caused by PM2.5 was mainly distributed in Sichuan Basin (1.14) and that caused by PM10 was principally distributed in Zigong (1.01). Additionally, the infants in Aba and Ganzi had high health resilience to the risk caused by PM2.5 (3.89 and 4.79, respectively) and PM10 (3.28 and 2.77, respectively), which was explained by the low risk in these two regions. These regions and Sichuan had severe spatial inequality between the infant hazard quotient caused by PM2.5 (G = 0.518, G = 0.493, and G = 0.456, respectively) and hospital density. This spatial inequality was also caused by PM10 (G = 0.525, G = 0.526, and G = 0.466, respectively), which is mainly attributed to the imbalance between hospital distribution and risk caused by PM2.5 (PM10) in these two areas. Such research could provide a basis for the formulation of medical construction and future air pollution control measures in Sichuan.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据