4.6 Article

Downregulation of miR-17-92a cluster promotes autophagy induction in response to celastrol treatment in prostate cancer cells

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2016.08.029

关键词

miR-17-92a; Autophagy; Celastrol; Prostate cancer; Androgen receptor

资金

  1. Natural Science Foundation of Heilongjiang Province, China [C201432]
  2. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

向作者/读者索取更多资源

Celastrol has potential application for the treatment of prostate cancer. However it causes autophagy as a protective response in prostate and other types of cancers, thus unveiling the underlying mechanisms may benefit its future application. In the present study, we demonstrate that the miR-17-92a cluster plays a negative role in celastrol induced-autophagy. Dissection of miR-17-92a cluster revealed the role of miR-17 seed family (miR-20a and miR-17) in autophagy inhibition in the context of prostate cancer cells. Autophagy-related gene ATG7 was validated as a target of miR-17 seed family by dual-luciferase assay and qPCR. Celastrol induced autophagy was inhibited by miR-20a or miR-17, while the inhibitory effects were rescued in the presence of pcDNA-ATG7 lacking 3' UTR, demonstrating that these two members target ATG7 to inhibit celastrol-induced autophagy. As celastrol degrades androgen receptor (AR), a key transcription factor in prostate cancer cells, we further investigated whether AR affected miR-17-92a expression in prostate cancer cells. AR binding sites were found in the promoter and two introns of miR-17-92a. In addition, higher expression levels of miR-17-92a were observed in AR positive cells compared with AR negative cells. Ectopic expression of AR could enhance the expression of miR-17-92a cluster in AR-negative prostate cancer cells while knockdown of AR decreased miR-17-92a expression in AR positive cells, demonstrating the regulation of AR on miR-17-92a transcription. In summary, our results demonstrate that celastrol downregulates AR and its target miR-17-92a, leading to autophagy induction in prostate cancer cells. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据