4.7 Article

Direct synthesis of two-dimensional MoS2 on p-type Si and application to solar hydrogen production

期刊

NPG ASIA MATERIALS
卷 11, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41427-019-0145-7

关键词

-

资金

  1. Bio & Medical Technology Development Program [2018M3A9H1023141]
  2. Creative Materials Discovery Program through the NRF - Ministry of Science and ICT [2017M3D1A1039379]
  3. Basic Research Laboratory of the NRF - Korean government [2018R1A4A1022647]

向作者/读者索取更多资源

Transition metal dichalcogenides (TMDs) are promising two-dimensional (2D) materials, and MoS2 has been specifically utilized in electronic devices and integrated circuits. However, the direct synthesis of MoS2 on traditional semiconductors, such as silicon, remains challenging due to the hydrophobic surface of nonoxide wafers (e.g., Si, GaAs, and InP). Herein, a novel, facile, reliable, and one-step method for the direct synthesis of single-crystal MoS2 on a p-Si wafer via hybrid thermolysis is proposed. To demonstrate the applicability of the proposed method, a MoS2/p-Si heterojunction was fabricated and used for solar-driven hydrogen production. The as-fabricated n-MoS2/p-Si heterojunction exhibited a benchmark current density of -13.5 +/- 1 mA/cm(2) at 0 V and an onset potential of +0.02 V. This method reliably and efficiently produced high-quality MoS2 crystals on a wafer scale and is sufficiently simple to overcome the challenges associated with previous approaches. The method developed herein represents a tremendous advancement in the fabrication of 2D electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据