4.8 Article

Emergence of anthropogenic signals in the ocean carbon cycle

期刊

NATURE CLIMATE CHANGE
卷 9, 期 9, 页码 719-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41558-019-0553-2

关键词

-

资金

  1. NASA [NNX17AI75G]
  2. Institute for Basic Science [IBS-R028-D1]
  3. NOAA award [NA17RJ2612, NA08OAR4320752, NA11OAR4310066]
  4. NOAA Office for Climate Observations
  5. Swiss National Science Foundation [PP00P2_170687]

向作者/读者索取更多资源

The attribution of anthropogenically forced trends in the climate system requires an understanding of when and how such signals emerge from natural variability. We applied time-of-emergence diagnostics to a large ensemble of an Earth system model, which provides both a conceptual framework for interpreting the detectability of anthropogenic impacts in the ocean carbon cycle and observational sampling strategies required to achieve detection. We found emergence timescales that ranged from less than a decade to more than a century, a consequence of the time lag between the chemical and radiative impacts of rising atmospheric CO2 on the ocean. Processes sensitive to carbonate chemical changes emerge rapidly, such as the impacts of acidification on the calcium carbonate pump (10 years for the globally integrated signal and 9-18 years for regionally integrated signals) and the invasion flux of anthropogenic CO2 into the ocean (14 years globally and 13-26 years regionally). Processes sensitive to the ocean's physical state, such as the soft-tissue pump, which depends on nutrients supplied through circulation, emerge decades later (23 years globally and 27-85 years regionally).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据