4.8 Article

An Ultrahigh Energy Density Quasi-Solid-State Zinc Ion Microbattery with Excellent Flexibility and Thermostability

期刊

ADVANCED ENERGY MATERIALS
卷 9, 期 37, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201901957

关键词

flexibility; high temperature stability; quasi-solid-state; ultrahigh energy density; zinc ion microbatteries

资金

  1. Anhui Provincial Natural Science Foundation [1908085QF251]
  2. Foundation for the Introduction of High-Level Talents of Anhui University [S020118002/061]
  3. National Natural Science Fund for Excellent Young Scholars [61722101]
  4. National Natural Science Foundation of China [11704002]

向作者/读者索取更多资源

The rapid development of smart wearable and integrated electronic products has urgently increased the requirement for high-performance microbatteries. Although few lithium ion microbatteries based on organic electrolytes have been reported so far, the problems, such as undesirable energy density, poor flexibility, inflammability, volatility toxicity, and high cost restrict their practical applications in the above-mentioned electronic products. In order to overcome these problems, a low cost quasi-solid-state aqueous zinc ion microbattery (ZIMB) assembled by a vanadium dioxide (B)-multiwalled carbon nanotubes (VO2 (B)-MWCNTs) cathode, a zinc nanoflakes anode, and a zinc trifluoromethanesulfonate-polyvinyl alcohol (Zn(CF3SO3)(2)-PVA) hydrogel electrolyte is exploited. As expected, the ZIMB exhibits excellent electrochemical performance, e.g., a high capacity of 314.7 mu Ah cm(-2), an ultrahigh energy density of 188.8 mu Wh cm(-2), and a high power density of 0.61 mW cm(-2). Furthermore, the ZIMB also shows high flexibility and excellent high temperature stability: the capacity has no obvious decay when the bending angle is up to 150 degrees and the temperature reaches 100 degrees C. The ZIMB provides a way to develop next-generation miniature energy storage devices with high performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据