4.7 Article

CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the Immune Deficiency Pathway Impacts Vector Competence for Leishmania major

期刊

MBIO
卷 10, 期 4, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.01941-19

关键词

CRISPR/Cas9; IMD pathway; Leishmania; sand fly

资金

  1. Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health

向作者/读者索取更多资源

Sand flies are the natural vectors for the Leishmania species that produce a spectrum of diseases in their mammalian hosts, including humans. Studies of sand fly/Leishmania interactions have been limited by the absence of genome editing techniques applicable to these insects. In this report, we adapted CRISPR (clustered regularly interspaced palindromic repeat)/Cas9 (CRISPR-associated protein 9) technology to the Phlebotomus papatasi sand fly, a natural vector for Leishmania major, targeting the sand fly immune deficiency (IMD) pathway in order to decipher its contribution to vector competence. We established a protocol for transformation in P. papatasi and were able to generate transmissible null mutant alleles for Relish (Rel), the only transcription factor of the IMD pathway. While the maintenance of a homozygous mutant stock was severely compromised, we were able to establish in an early generation their greater susceptibility to infection with L. major. Flies carrying different heterozygous mutant alleles variably displayed a more permissive phenotype, presenting higher loads of parasites or greater numbers of infective-stage promastigotes. Together, our data show (i) the successful adaptation of the CRISPR/Cas9 technology to sand flies and (ii) the impact of the sand fly immune response on vector competence for Leishmania parasites. IMPORTANCE Sand flies are the natural vectors of Leishmania parasites. Studies of sand fly/Leishmania interactions have been limited by the lack of successful genomic manipulation of these insects. This paper shows the first example of successful targeted mutagenesis in sand flies via adaptation of the CRISPR/Cas9 editing technique. We generated transmissible null mutant alleles of relish, a gene known to be essential for the control of immune response in other insects. In addition to the expected higher level of susceptibility to bacteria, the mutant flies presented higher loads of parasites when infected with L. major, showing that the sand fly immune response impacts its vector competence for this pathogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据