4.4 Article

Activation of mTORC1 in fibroblasts accelerates wound healing and induces fibrosis in mice

期刊

WOUND REPAIR AND REGENERATION
卷 28, 期 1, 页码 6-15

出版社

WILEY
DOI: 10.1111/wrr.12759

关键词

-

资金

  1. National Natural Science Foundation of China [81501689, 31571185]

向作者/读者索取更多资源

Wound healing is a multicellular process that involves the coordinated efforts of several cell types, including keratinocytes, fibroblasts, and endothelial cells. This process is also regulated by an equally complex signaling network involving numerous growth factors, cytokines, and chemokines. The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth, proliferation, and differentiation. A recent study showed that mTORC1 activation in epithelial cells dramatically enhanced epithelial cell proliferation, migration, and cutaneous wound healing; however, the roles of mTORC1 in fibroblasts during wound healing remain unknown. Here, we generated genetically mutated mice with activated mTORC1 in fibroblasts by conditionally deleting the mTORC1 inhibitor, TSC1. Activation of mTORC1 in fibroblasts significantly increased fibroblastic cell proliferation and contractile a-smooth muscle actin expression, thus promoting wound closure. Elevated mTORC1 activity also adversely induced excessive collagen production, leading to excessive scaring and fibrosis. Importantly, both accelerated wound healing and fibrotic phenotypes were largely reversed by the mTORC1 inhibitor, rapamycin. These observations were also replicated in primary human dermal fibroblasts. These results collectively demonstrated that mTORC1 activity in skin fibroblasts was a critical orchestrator in cutaneous wound healing and scarring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据