4.8 Article

Hydroxyl radical and non-hydroxyl radical pathways for trichloroethylene and perchloroethylene degradation in catalyzed H2O2 propagation systems

期刊

WATER RESEARCH
卷 159, 期 -, 页码 46-54

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.05.001

关键词

Catalyzed H2O2 propagations (CHP); Modified Fenton's reagent; Hydrogen peroxide; Hydroxyl radical; Superoxide; In situ chemical oxidation (ISCO)

资金

  1. Strategic Environmental Research and Development Program [CU-1489]
  2. WSU Chemical Oxidations Service Center

向作者/读者索取更多资源

Catalyzed H2O2 propagations (CHP) is characterized by the most robust reactivity of any of the in situ chemical oxidation (ISCO) technologies because it generates the strong oxidant hydroxyl radical along with nucleophiles + reductants, such as superoxide radical. The most common groundwater contaminants, trichioroethylene (TCE) and perchloroethylene (PCE), were used as model contaminants in evaluating the effect of hydrogen peroxide (H2O2) dosage on contaminant destruction kinetics. Both TCE and PCE degradation rates increased with H2O2 dosages up to 0.1 M, and then decreased with higher H2O2 dosages. Parallel reactions conducted with the addition of the hydroxyl radical scavenger 2-propanol and the hydroxyl radical -specific probe nitrobenzene confirmed that hydroxyl radical is primarily responsible for TCE and PCE degradation; however, 5-20% of their degradation was attributed to a non-hydroxyl radical mechanism. Reactions conducted with the superoxide probe tetranitromethane showed that superoxide generation rates increased with increasing H2O2 doses. These results were confirmed by electron spin resonance spectroscopy. Therefore, the non-hydroxyl radical pathway for TCE and PCE degradation at H2O2 >= 0.5 M was likely via nucleophilic attack by superoxide. The results of this research demonstrate that contaminants present in the aqueous phase that are reactive with hydroxyl radical require only low doses of H2O2 (<= 0.1 M), but subsurface systems contaminated with species not reactive with hydroxyl radical (e.g., carbon tetrachloride) require H2O2 concentrations >= 0.5 M. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据