4.5 Article

Within-tree variability and sample storage effects of bordered pit membranes in xylem of Acer pseudoplatanus

期刊

TREES-STRUCTURE AND FUNCTION
卷 34, 期 1, 页码 61-71

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00468-019-01897-4

关键词

Bordered pit; Electron microscopy; Pit membrane; Vessel; Wood anatomy

类别

向作者/读者索取更多资源

Key message Intervessel pit membranes in xylem tissue of Acer pseudoplatanus differ in their thickness both within and across plant organs and may undergo considerable shrinkage during dehydration and sample preparation. Intervessel pit membranes have been suggested to account for more than half of the total xylem hydraulic resistance in plants and play a major role in vulnerability to drought-induced hydraulic failure. While the thickness of intervessel pit membranes was found to be associated with xylem embolism resistance at an interspecific level, variation in pit membrane structure across different organs along the flow path within a single tree remains largely unknown. Based on transmission electron microscopy, we examined intra-tree variation of bordered pit and pit membrane characteristics in xylem of roots, stems, branches, petioles, and leaf veins of Acer pseudoplatanus. Moreover, potential preparation artefacts on pit membrane structure such as alcohol treatment and dehydration were tested. Our observations showed quantitative differences in bordered pits across organs, including variation in pit membrane thickness within and across organs. Vessel size was weakly related to intervessel wall thickness, but not significantly linked to pit membrane thickness. Gradual dehydration of wood samples resulted in irreversible shrinkage of pit membranes, together with increased levels of aspiration. These findings are relevant to explore similarity in xylem embolism resistance across plant organs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据