4.7 Article

Langevin method for a continuous stochastic car-following model and its stability conditions

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.trc.2019.06.005

关键词

Stochastic traffic flow; Stochastic process; Car-following; Optimal velocity model (OVM); Langevin equations

向作者/读者索取更多资源

In car-following models, the driver reacts according to his physical and psychological abilities which may change over time. However, most car-following models are deterministic and do not capture the stochastic nature of human perception. It is expected that purely deterministic traffic models may produce unrealistic results due to the stochastic driving behaviors of drivers. This paper is devoted to the development of a distinct car-following model where a stochastic process is adopted to describe the time-varying random acceleration which essentially reflects the random individual perception of driver behavior with respect to the leading vehicle over time. In particular, we apply coupled Langevin equations to model complex human driver behavior. In the proposed model, an extended Cox-Ingersoll-Ross (CIR) stochastic process will be used to describe the stochastic speed of the follower in response to the stimulus of the leader. An important property of the extended CIR process is to enhance the non-negative properties of the stochastic traffic variables (e.g. non-negative speed) for any arbitrary model parameters. Based on stochastic process theories, we derive stochastic linear stability conditions which, for the first time, theoretically capture the effect of the random parameter on traffic instabilities. Our stability results conform to the empirical results that the traffic instability is related to the stochastic nature of traffic flow at the low speed conditions, even when traffic is deemed to be stable from deterministic models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据