4.7 Review

siRNA therapeutics for breast cancer: recent efforts in targeting metastasis, drug resistance, and immune evasion

期刊

TRANSLATIONAL RESEARCH
卷 214, 期 -, 页码 105-120

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.trsl.2019.08.005

关键词

-

资金

  1. National Cancer Institute of the National Institutes of Health [R44CA217534]
  2. OHSU

向作者/读者索取更多资源

Small interfering RNA (siRNA) has an established and precise mode of action to achieve protein knockdown. With the ability to target any protein, it is very attractive as a potential therapeutic for a plethora of diseases driven by the (over)expression of certain proteins. Utilizing siRNA to understand and treat cancer, a disease largely driven by genetic aberration, is thus actively investigated. However, the main hurdle for the clinical translation of siRNA therapeutics is to achieve effective delivery of siRNA molecules to tumors and the site of action, the cytosol, within cancer cells. Several nanoparticle delivery platforms for siRNA have been developed. In this Review, we describe recent efforts in developing siRNA therapeutics for the treatment of cancer, with particular emphasis on breast cancer. Instead of conventionally targeting proliferation and apoptosis aspects of tumorigenesis, we focus on recent attempts in targeting cancer's metastasis, drug resistance, and immune evasion, which are considered more challenging and less manageable in clinics with current therapeutic molecules. siRNA can target all proteins, including traditionally undruggable proteins, and is thus poised to address these clinical challenges. Evidence also suggests that siRNA can be superior to antibodies or small molecule inhibitors when inhibiting the same druggable pathway. In addition to cancer cells, the role of the tumor microenvironment has been increasingly appreciated. Components in the tumor microenvironment, particularly immune cells, and thus siRNA-based immunotherapy, are under extensive investigation. Lastly, multiple siRNAs with or without additional drugs can be codelivered on the same nano particle to the same target site of action, maximizing their potential synergy while limiting off-target toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据