4.5 Article

Electrochemical molecularly imprinted polymer based on zinc oxide/graphene/poly(o-phenylenediamine) for 4-chlorophenol detection

期刊

SYNTHETIC METALS
卷 254, 期 -, 页码 141-152

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.synthmet.2019.06.015

关键词

4-chlorophenol; Zinc oxide NPs; Graphene; Poly(o-phenilynediamen) nanocomposite; Electrochemical sensor; MIPs

向作者/读者索取更多资源

An electrochemical sensor on a modified glassy carbon electrode (GCE) for the detection of 4-chlorophenol (4-CP) was investigated. A GCE was coated by a zinc oxide nanoparticle/graphene nanoplatelet/poly(o-phenylenediamine) polymer nanocomposite (GCE/ZnO/GNPs/MIP). The nanocomposite improved the electrochemical response and sensitivity of the sensor for the detection of 4-CP. The surface morphology and crystal structure of the prepared nanomaterial were characterized using different chemical and physical techniques, showing homogenous distributions of ZnO and GNPs over the electrode. The electrochemical behavior of the GCE/ZnO/GNPs/MIP nanocomposite-based sensor was evaluated using cyclic voltammetry and electrochemical impedance spectroscopy. Under optimized experimental conditions, the electrochemical sensor exhibited excellent analytical performance with a very low detection limit. The electrochemical sensor was utilized to determine 4-CP levels in real water samples; the sensor exhibited high selectivity, sensitivity, and repeatability. These results showed that the GCE/ZnO/GNPs/MIP sensor could be a facile, robust, practical, low-cost and rapid tool for potential on-line monitoring of 4-CP in water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据