4.7 Article

A temporal perspective to dam management: influence of dam life and threshold fishery conditions on the energy-fish tradeoff

出版社

SPRINGER
DOI: 10.1007/s00477-019-01726-7

关键词

System dynamics modeling; Energy-fish nexus; Hydroelectric dam construction and removal; Diadromous fish restoration

向作者/读者索取更多资源

While hydroelectric dams play a significant role in meeting energy demand, they pose risks to riverine biodiversity and floodplain fisheries, affecting fish populations and biomass loss. Dam life span and initial fishery conditions have a significant impact on fish restoration time and the energy-food nexus.
While hydroelectric dams play a significant role in meeting the increasing energy demand worldwide, they pose a significant risk to riverine biodiversity and food security for millions of people that mainly depend upon floodplain fisheries. Dam structures could affect fish populations both directly and indirectly through loss of accessible spawning and rearing habitat, degradation of habitat quality (e.g., changes in temperature and discharge), and/or turbine injuries. However, our understandings of the impacts of dam life span and the initial fishery conditions on restoration time and hence the dynamic hydropower (energy)-fish (food) nexus remain limited. In this study, we explored the temporal energy-food tradeoffs associated with a hydroelectric dam located in the Penobscot River basin of the United States. We investigated the influence of dam life span, upstream passage rate, and downstream habitat area on the energy-food tradeoffs using a system dynamics model. Our results show that around 90% of fish biomass loss happen within 5 years of dam construction. Thereafter, fish decline slowly stabilizes and approaches the lowest value at around the 20th year after dam construction. Fish restoration period is highly sensitive even to a short period of blockage. The biomass of alewife spawners need 18 years to recover with only 1-year of blockage to the upstream critical habitats. Hydropower generation and loss of fish biomass present a two-segment linear relationship under changes in dam life span. When the dam life span is less than 5 years, generating 1 GWh energy cause around 0.04 million kg loss of fish biomass; otherwise, the loss of fish biomass is 0.02 million kg. The loss of fish biomass could be significantly decreased with minimal energy loss through increasing upstream passage rate and/or the size of downstream habitat area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据