4.4 Article

Deep Convolutional Neural Network-Based Structural Damage Localization and Quantification Using Transmissibility Data

期刊

SHOCK AND VIBRATION
卷 2019, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2019/9859281

关键词

-

资金

  1. Chilean National Fund for Scientific and Technological Development (FONDECYT) [1160494, 1170535]

向作者/读者索取更多资源

Damage diagnosis has become a valuable tool for asset management, enhanced by advances in sensor technologies that allows for system monitoring and providing massive amount of data for use in health state diagnosis. However, when dealing with massive data, manual feature extraction is not always a suitable approach as it is labor intensive requiring the intervention of domain experts with knowledge about the relevant variables that govern the system and their impact on its degradation process. To address these challenges, convolutional neural networks (CNNs) have been recently proposed to automatically extract features that best represent a system's degradation behavior and are a promising and powerful technique for supervised learning with recent studies having shown their advantages for feature identification, extraction, and damage quantification in machine health assessment. Here, we propose a novel deep CNN-based approach for structural damage location and quantification, which operates on images generated from the structure's transmissibility functions to exploit the CNNs' image processing capabilities and to automatically extract and select relevant features to the structure's degradation process. These feature maps are fed into a multilayer perceptron to achieve damage localization and quantification. The approach is validated and exemplified by means of two case studies involving a mass-spring system and a structural beam where training data are generated from finite element models that have been calibrated on experimental data. For each case study, the models are also validated using experimental data, where results indicate that the proposed approach delivers satisfactory performance and thus being an appropriate tool for damage diagnosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据