4.7 Article

Antioxidant defenses and metabolic responses of blue mussels (Mytilus edulis) exposed to various concentrations of erythromycin

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 698, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.134221

关键词

Antibiotics; Blue mussels; Antioxidant enzymes; Environmental metabolomics

资金

  1. National Natural Science Foundation of China [41671483, 41977360]
  2. National R D Program [2017YFC0505704, 2018YFC1801103]

向作者/读者索取更多资源

Erythromycin, one of the most widely used macrolide antibiotics, has been detected in various aquatic environments, so erythromycin ecotoxicity should deserve more attention. In this study, blue mussels (Mytilus edulis) were exposed to erythromycin to explore its potential physiological toxicity. After 2d acute and 7d sub-acute exposure to erythromycin, blue mussel glutathione S-transferase (GST) and catalase (CAT) activities were determined with microplate methods and metabolic responses were analyzed using H-1 nuclear magnetic resonance (H-1 NMR). The results revealed that GST was approximately 1.6 times higher in exposed mussels at 200 mg/L and higher concentrations. CAT was about 1.9 times higher in exposed mussels at 200 mg/L, indicating that erythromycin exposure led that blue mussels enhanced antioxidant responses. Low doses of erythromycin exposure had a relatively small impact on the metabolism, while high doses of erythromycin exposure (200 and 400 mg/L) disturbed metabolic balance. With the increase of erythromycin concentrations, the individual metabolic differences within the same treatment groups also increased. The significant increase in alanine, glutamate, taurine, glycine and betaine were observed after acute and subacute exposure. Betaine played an important role in protecting antioxidant enzyme activities through adjusting osmotic pressure. The metabolomic results also showed the modes of erythromycin acted on the energy metabolism, osmoregulation, nerve activities and amino acid metabolism. This study highlighted how metabolomics can provide a comprehensive picture of metabolic responses, although significant antioxidant and metabolic responses were observed at high exposure concentrations. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据