4.7 Article

Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 699, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.134226

关键词

Biogas; Anaerobic fermentation; Hydrolysate; Acidification

资金

  1. National Key Research and Development Program of China [2018YFE0106400]
  2. Shandong Provincial Natural Science Foundation [ZR2018LB031]
  3. National Natural Science Foundation of China [51608314]
  4. Shandong Province Key Research and Development Program of China [2017GSF17117, 2018GSF117005]
  5. Doctoral Cooperation Fund of Shandong Academy of Sciences [2017BSHZ003]

向作者/读者索取更多资源

Biogas production from lignocellulosic hydrolysate is of great potential for lignocellulosic materials. Two-phase anaerobic digestion was proposed in this study. Acidogenic fermentation was carried out with corn straw hydrolysate as feedstock for volatile fatty acids (VFAs) production. Using anaerobic sludge (AnS), different inoculum to substrate ratios (ISRs) of 0.5:1, 1:1 and 2:1 were investigated. The highest VFAs yield was obtained at ISR of 0.5:1.VFAs composition analysis showed that butyric acid was the predominant acid, followed by acetic acid and propionic acid. The effects of AnS and aerobic sludge (AeS) on the acidogenic performance of hydrolysate were compared. The optimum VFA yields were 0.38 g/g COD-added for AnS and 0.32 g/g COD-added for AeS with HRT of 5 d, respectively. The bacterial diversities of inocula and digestates were analyzed by high-throughput sequencing. Two origins of inocula had distinct bacterial structures, but they did share core communities that included Firmicutes, Chloroflexi, Proteobacteria and Bacteroidetes at phylum level. The bacterial communities of both digestates changed significantly as compared with those in inoculum. Firmicutes was absolutely dominant in all the bacterial species. Therefore, the AeS could be an option as the acidogenic inoculum. The microbial information will be beneficial for the enrichment and acclimatization of microbes. In methanogenic process, VFAs obtained in acidogenic stage could be efficiently converted into methane. The ultimate methane yield at organic loading rate (OLR) of 8 g/L.d could reach 290 mL CH4/g COD-added and 279 mL CH4/g COD-added for AnS and AeS acidified digestate. Two-phase anaerobic digestion was proved to be suitable for bioconversion of lignocellulosic hydrolysate into biogas. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据