4.7 Article

Supercritical water oxidation of semi-coke wastewater: Effects of operating parameters, reaction mechanism and process enhancement

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 710, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.134396

关键词

Supercritical water oxidation; Semi-coke wastewater; Degradation; Reaction mechanism; NH3-N effect; Segmented oxidation

资金

  1. Fundamental Research Funds for the Central Universities [xzy022019025, xjj2018201, xjj2018006]
  2. National Natural Science Foundation of China [51871179]
  3. National Key Research and Development Program of China [2016YFC0801904]
  4. China Postdoctoral Science Foundation [2019TQ0248]

向作者/读者索取更多资源

Semi-coke wastewater is a kind of industrial wastewater with complex composition, high concentration of organic pollutants and high chroma, seriously threatening the ecological environment and requiring to be effectively degraded. Supercritical water oxidation (SCWO), as for a promising environmental technology, was applied to treat semi-coke wastewater in this work. The influences of key operating parameters such as reaction temperature (400-600 degrees C), oxidation coefficient (1.0-4.0) and residence time (0.510 min), the reaction mechanism for organics in semi-coke wastewater and the process enhancement methods like catalytic oxidation and segmented oxidation were systematically investigated. Experimental results showed that the removal efficiency of COD and NH3-N both significantly increased with the increasing of temperature, oxidation coefficient and residence time, the COD removal efficiency and NH3-N removal efficiency could be 99.02% and 63.94% obtained under the condition of 600 degrees C, 25 MPa, 1.3 times oxidation coefficient and 10 min. The residual organics in liquid products were mainly phenols, ketones, imidazoles, esters and pyridines, which produced from the cyclization and esterification reaction between intermediate products such as alcohols, aldehydes, acids and NH3-N, etc. What's more, NH3-N was proved to have inhibitory effect on the degradation of phenol by generating more stubborn nitrogen-containing compounds with that. Besides, compared with single catalyst, the composite catalyst of MnO2/CeO2 exhibited the highest catalytic activity, which could synergistically degrade 98.52% COD and 67.18% NH3-N under a relatively mild reaction condition (550 degrees C, 25 MPa, 1.3 times oxidation coefficient, 2 min). Moreover, the segmented oxidation, combining the pre-oxidation in preheater and oxidation in reactor, was firstly observed and analyzed here, could achieve a higher COD removal efficiency with a shorter length of the reactor. The results obtained in this paper proved the technical feasibility and could provide basic data support for the industrialization of semi-coke wastewater treatment by SCWO. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据