4.7 Article

Photocatalytic degradation of trihalomethanes and haloacetonitriles on graphitic carbon nitride under visible light irradiation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 682, 期 -, 页码 200-207

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2019.05.075

关键词

Photocatalysis; Visible light; Graphitic carbon nitride; Trihalomethanes (THMs); Haloacetonitriles (HANs)

资金

  1. National Natural Science Foundation of China [21306003]
  2. China Scholarship Council [201408110034]

向作者/读者索取更多资源

Trihalomethanes (THMs) and haloacetonitriles (HANs), most common disinfection by-products in drinking water, pose adverse environmental impacts and potential risks to human health. There is a pressing need to develop innovative, economically feasible, and environmentally benign processes to control these persistent contaminants. In this paper, visible-light-responsive graphitic carbon nitride (g-C3N4) samples were synthesized to degrade the THMs and HANs and the photocatalytic degradation mechanism was explored. The results indicated that a carbon-doped g-C3N4 with an optimum dopant content (MCB0.07) displayed the best photocatalytic activity for the total trihalomethanes (TTHM) and total haloacetonitriles (THAN), with the reaction rate constant of 11.6 and 10.4 (10(-3)min(-1)), respectively. MCB0.07 demonstrated a high THMs and HANs removal efficiency under visible light irradiation and could be reused. According to scavenger tests of the selected reactive species and X-ray photoelectron spectroscopy, holes play a dominant role for both THMs and HANs degradation on the MCB0.07. The degradation of HANs by holes proceeded mainly through breakage of the C-C bond in the C-C N group. The THMs degradation was achieved through hydrogen abstraction or/and dehalogenation. The brominated-THMs/HANs were more photosensitive than their chlorinated analogous and were less stable than bromo-chloro-THMs/HANs. This study sheds light on the mechanism of the photocatalytic degradation of THMs and HANs under visible light irradiation by carbon-doped g-C3N4. Furthermore, it could provide insights for engineering applications and contaminant control in drinking water purification. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据