4.7 Article

A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 701, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.134413

关键词

Flash flood; Deep learning; Adaptive moment estimation; Geographic Information System (GIS); Vietnam

资金

  1. GIS Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam

向作者/读者索取更多资源

This research proposes and evaluates a new approach for flash flood susceptibility mapping based on Deep Learning Neural Network (DLNN)) algorithm, with a case study at a high-frequency tropical storm area in the northwest mountainous region of Vietnam. Accordingly, a DLNN structure with 192 neurons in 3 hidden layers was proposed to construct an inference model that predicts different levels of susceptibility to flash flood. The Rectified Linear Unit (ReLU) and the sigmoid were selected as the activate function and the transfer function, respectively, whereas the Adaptive moment estimation (Adam) was used to update and optimize the weights of the DLNN. A database for the study area, which includes factors of elevation, slope, curvature, aspect, stream density, NDVI, soil type, lithology, and rainfall, was established to train and validate the proposed model. Feature selection was carried out for these factors using the Information gain ratio. The results show that the DLNN attains a good prediction accuracy with Classification Accuracy Rate = 92.05%, Positive Predictive Value = 94.55% and Negative Predictive Value = 89.55%. Compared to benchmarks, Multilayer Perceptron Neural Network and Support Vector Machine, the DLNN performs better; therefore, it could be concluded that the proposed hybridization of GIS and deep learning can be a promising tool to assist the government authorities and involving parties in flash flood mitigation and land-use planning. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据