4.8 Article

Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons

期刊

SCIENCE
卷 365, 期 6456, 页码 929-+

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aaw5937

关键词

-

资金

  1. National Institutes of Health

向作者/读者索取更多资源

Actin, spectrin, and related molecules form a membrane-associated periodic skeleton (MPS) in neurons. The function of the MPS, however, remains poorly understood. Using super-resolution imaging, we observed that G protein-coupled receptors (GPCRs), cell adhesion molecules (CAMs), receptor tyrosine kinases (RTKs), and related signaling molecules were recruited to the MPS in response to extracellular stimuli, resulting in colocalization of these molecules and RTK transactivation by GPCRs and CAMs, giving rise to extracellular signal-regulated kinase (ERK) signaling. Disruption of the MPS prevented such molecular colocalizations and downstream ERK signaling. ERK signaling in turn caused calpain-dependent MPS degradation, providing a negative feedback that modulates signaling strength. These results reveal an important functional role of the MPS and establish it as a dynamically regulated platform for GPCR-and CAM-mediated RTK signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据