4.8 Review

Mixed ionic-electronic conducting (MIEC) membranes for thermochemical reduction of CO2: A review

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pecs.2019.04.003

关键词

CO2 reduction; Oxygen permeable; Membrane reactor; Process intensification; Solar-fuel

资金

  1. Exelon Corporation

向作者/读者索取更多资源

Intermediate temperature membrane-supported CO2 thermochemical reduction using renewable energy is a clean approach for reusing CO2. To implement this technology at scale, stable catalytic membrane materials with fast kinetics should be developed, and reactor designs and system integrations should be optimized. In this review, we highlight major advancements in experimental and numerical efforts on mixed ionic-electronic conducting (MIEC) membrane-supported CO2 thermochemical reduction, and discuss the connection among materials, kinetics, membranes and reactor design. First, we discuss the thermodynamics and kinetics of CO2 reduction and the working principles of membrane reactors. Two methods are compared: chemical looping (redox) and membrane supported CO2 reduction. Next, we compare CO2 conversion rates on various membrane materials and their stability. Strontium based perovskites, e.g., Nb2O5-doped SrCo0.8Fe0.2O3.delta (SCoF-82) show the highest CO2 reduction rates so far, but they suffer degradation mainly from carbonate formation. Mixed-phase membranes are promising, with high reduction rates and good stability. Surface modification can enhance the reduction rates and increase membrane stabilities. In order to accelerate the development in materials and membranes, kinetic parameters, e.g., conductivity and reaction rate constants should be obtained from high throughput benchtop reactors complemented by reduced physical models. The mechanisms and transport models for surface kinetics and bulk diffusion are summarized. Using these results, changes in membrane morphology and surface chemistry are proposed. Finally, we summarize methods and system-scaled analysis to integrate this membrane technology with renewable or waste heat sources for fuel production and energy storage. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据