4.8 Article

Single-cell RNA-seq identifies a reversible mesodermal activation in abnormally specified epithelia of p63 EEC syndrome

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1908180116

关键词

p63; single-cell RNA-seq; stratified epithelia; EEC; cell fate commitment

资金

  1. Royal Dutch Academy of Science (KNAW/CEP) [530-5CDP08]
  2. Netherlands Organisation for Scientific Research (NWO/ALW/MEERVOUD) [836.12.010]
  3. Radboud University fellowship
  4. Chinese Scholarship Council [201606230213, 201406330059]
  5. Brazilian Science without Borders program

向作者/读者索取更多资源

Mutations in transcription factor p63 are associated with developmental disorders that manifest defects in stratified epithelia including the epidermis. The underlying cellular and molecular mechanism is however not yet understood. We established an epidermal commitment model using human induced pluripotent stem cells ( iPSCs) and characterized differentiation defects of iPSCs derived from ectrodactyly, ectodermal dysplasia, and cleft lip/palate ( EEC) syndrome patients carrying p63 mutations. Transcriptome analyses revealed stepwise cell fate transitions during epidermal commitment: Specification from multipotent simple epithelium to basal stratified epithelia and ultimately to the mature epidermal fate. Differentiation defects of EEC iPSCs caused by p63 mutations occurred during the specification switch from the simple epithelium to the basal-stratified epithelial fate. Single-cell transcriptome and pseudotime analyses of cell states identified mesodermal activation that was associated with the deviated commitment route of EEC iPSCs. Integrated analyses of differentially regulated genes and p63-dependent dynamic genomic enhancers during epidermal commitment suggest that p63 directly controls epidermal gene activation at the specification switch and has an indirect effect on mesodermal gene repression. Importantly, inhibitors of mesodermal induction enhanced epidermal commitment of EEC iPSCs. Our findings demonstrate that p63 is required for specification of stratified epithelia, and that epidermal commitment defects caused by p63 mutations can be reversed by repressing mesodermal induction. This study provides insights into disease mechanisms underlying stratified epithelial defects caused by p63 mutations and suggests potential therapeutic strategies for the disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据