4.8 Article

Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1909122116

关键词

DNA; hydrophobic catalysis; threading intercalation; DNA polymerase; RecA

资金

  1. Swedish Research Council [2015-04020, 2015-5062]
  2. Olle Engqvist Foundation [2016/84]
  3. NIH [R01-HG006851, R01GM032543]
  4. US Department of Energy Office of Basic Energy Sciences Nanomachine Program [DE-AC02-05CH11231]
  5. Swedish Research Council [2015-04020] Funding Source: Swedish Research Council

向作者/读者索取更多资源

Hydrophobic base stacking is a major contributor to DNA double-helix stability. We report the discovery of specific unstacking effects in certain semihydrophobic environments. Water-miscible ethylene glycol ethers are found to modify structure, dynamics, and reactivity of DNA by mechanisms possibly related to a biologically relevant hydrophobic catalysis. Spectroscopic data and optical tweezers experiments show that base-stacking energies are reduced while base-pair hydrogen bonds are strengthened. We propose that a modulated chemical potential of water can promote longitudinal breathing and the formation of unstacked holes while base unpairing is suppressed. Flow linear dichroism in 20% diglyme indicates a 20 to 30% decrease in persistence length of DNA, supported by an increased flexibility in single-molecule nanochannel experiments in poly( ethylene glycol). A limited ( 3 to 6%) hyperchromicity but unaffected circular dichroism is consistent with transient unstacking events while maintaining an overall average B-DNA conformation. Further information about unstacking dynamics is obtained from the binding kinetics of large thread-intercalating ruthenium complexes, indicating that the hydrophobic effect provides a 10 to 100 times increased DNA unstacking frequency and an open hole population on the order of 10(-2) compared to 10(-4) in normal aqueous solution. Spontaneous DNA strand exchange catalyzed by poly( ethylene glycol) makes us propose that hydrophobic residues in the L2 loop of recombination enzymes RecA and Rad51 may assist gene recombination via modulation of water activity near the DNA helix by hydrophobic interactions, in the manner described here. We speculate that such hydrophobic interactions may have catalytic roles also in other biological contexts, such as in polymerases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据