4.8 Article

Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1904697116

关键词

CRISPR genome editing; nanolipogel; triple-negative breast cancer; ICAM1

资金

  1. National Institutes of Health (NIH) [R01CA185530]
  2. Breast Cancer Research Foundation
  3. NIH [1DP2CA174495]

向作者/读者索取更多资源

Triple-negative breast cancer (TNBC), which has the highest mortality rate of all breast cancer, is in urgent need of a therapeutic that hinders the spread and growth of cancer cells. CRISPR genome editing holds the promise of a potential cure for many genetic diseases, including TNBC; however, its clinical translation is being challenged by the lack of safe and effective nonviral delivery systems for in vivo therapeutic genome editing. Here we report the synthesis and application of a noncationic, deformable, and tumor-targeted nanolipogel system (tNLG) for CRISPR genome editing in TNBC tumors. We have demonstrated that tNLGs mediate a potent CRISPR knockout of Lipocalin 2 (Lcn2), a known breast cancer oncogene, in human TNBC cells in vitro and in vivo. The loss of Lcn2 significantly inhibits the migration and the mesenchymal phenotype of human TNBC cells and subsequently attenuates TNBC aggressiveness. In an orthotopic TNBC model, we have shown that systemically administered tNLGs mediated >81% CRISPR knockout of Lcn2 in TNBC tumor tissues, resulting in significant tumor growth suppression (>77%). Our proof-of-principle results provide experimental evidence that tNLGs can be used as a safe, precise, and effective delivery approach for in vivo CRISPR genome editing in TNBC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据