4.3 Article

Successive linearisation approach to analyse thermally radiative stagnation point micropolar nanofluid flow with regression model

期刊

PRAMANA-JOURNAL OF PHYSICS
卷 93, 期 5, 页码 -

出版社

INDIAN ACAD SCIENCES
DOI: 10.1007/s12043-019-1834-z

关键词

Quadratic multiple regression analysis; thermophoretic and Brownian diffusions; thermal radiation; viscous and Joule dissipations; successive linearisation method

向作者/读者索取更多资源

The present paper is devoted to the investigation of magnetohydrodynamics (MHD) mixed convection stagnation point flow of a micropolar nanofluid with thermal radiation, microrotation, viscous and Joule dissipations, Brownian and thermophoretic diffusions, etc. The present analysis is done because it contains large potential to deal with many industrial processes such as electrical power generation, nuclear energy plant, melt spinning technique for cooling liquids, astrophysical flows, space vehicles, geothermal extractions, solar system, etc. The numerical solutions of the governing equations are obtained by successive linearisation method (SLM). The influence of various developing parameters, such as thermal radiation parameter, mixed convection parameter, thermophoretic parameter, etc., on the flow field is examined through graphs by accumulating sufficient data using SLM. A comparative study is performed between our results and previously obtained results in the limiting sense. Apart from this, the quadratic multiple regression analysis is performed for skin friction coefficient. It indicates that when the free stream is moving with less velocity than stretching velocity then a small variation in microrotation leads to large perturbation in skin friction in comparison to mixed convection parameter but in the opposite case, the buoyancy force becomes more dominant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据