4.6 Article

Tripeptide Arg-Gly-Asp (RGD) modifies the molecular mechanical properties of the non-muscle myosin IIA in human bone marrow-derived myofibroblasts seeded in a collagen scaffold

期刊

PLOS ONE
卷 14, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0222683

关键词

-

向作者/读者索取更多资源

Mesenchymal stem cells (MSCs) were obtained from human bone marrow and amplified in cultures supplemented with human platelet lysate in order to generate myofibroblasts. When MSCs were seeded in solid collagen scaffolds, they differentiated into myofibroblasts that were observed to strongly bind to the substrate, forming a 3D cell scaffold network that developed tension and shortening after KCI stimulation. Moreover, MSC-laden scaffolds recapitulated the Frank-Starling mechanism so that active tension increased in response to increases in the initial length of the contractile system. This constituted a bioengineering tissue that exhibited the contractile properties observed in both striated and smooth muscles. By using the A. F. Huxley formalism, we determined the myosin cross bridge (CB) kinetics of attachment (f1) and detachment (g1 and g2), maximum myosin ATPase activity, molar myosin concentration, unitary CB force and maximum CB efficiency. CB kinetics were dramatically slow, characterizing the non-muscle myosin type IIA (NMMIIA) present in myofibroblasts. When MSCs were seeded in solid collagen scaffolds functionalized with Arg-Gly-Asp (RGD), contractility increased and CB kinetics were modified, whereas the unitary NMMIIA-CB force and maximum CB efficiency did not change. In conclusion, we provided a non-muscle bioengineering tissue whose molecular mechanical characteristics of NMMIIA were very close to those of a non-muscle contractile tissue such as the human placenta.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据