4.8 Article

A Role for Tocopherol Biosynthesis in Arabidopsis Basal Immunity to Bacterial Infection

期刊

PLANT PHYSIOLOGY
卷 181, 期 3, 页码 1008-1028

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.19.00618

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy [EXC 2048/1-390686111]
  2. DFG [ZE467/6-2]

向作者/读者索取更多资源

Tocopherol biosynthesis is required for effective basal resistance of Arabidopsis to Pseudomonas syringae infection. Tocopherols are lipid-soluble antioxidants synthesized in plastids of plants and other photosynthetic organisms. The four known tocopherols, alpha-, beta-, gamma-, and delta-tocopherol, differ in number and position of methyl groups on their chromanol head group. In unstressed Arabidopsis (Arabidopsis thaliana) leaves, alpha-tocopherol constitutes the main tocopherol form, whereas seeds predominantly contain gamma-tocopherol. Here, we show that inoculation of Arabidopsis leaves with the bacterial pathogen Pseudomonas syringae induces the expression of genes involved in early steps of tocopherol biosynthesis and triggers strong accumulation of gamma-tocopherol, moderate production of delta-tocopherol, and generation of the benzoquinol precursors of tocopherols. The pathogen-inducible biosynthesis of tocopherols is promoted by the immune regulators ENHANCED DISEASE SUSCEPTIBILITY1 and PHYTOALEXIN-DEFICIENT4. In addition, tocopherols accumulate in response to bacterial flagellin and reactive oxygen species. By quantifying tocopherol forms in inoculated wild-type plants and biosynthetic pathway mutants, we provide biochemical insights into the pathogen-inducible tocopherol pathway. Notably, vitamin E deficient2 (vte2) mutant plants, which are compromised in both tocopherol and benzoquinol precursor accumulation, exhibit increased susceptibility toward compatible P. syringae and possess heightened levels of markers of lipid peroxidation after bacterial infection. The deficiency of triunsaturated fatty acids in vte2-1 fatty acid desaturase3-2 (fad3-2) fad7-2 fad8 quadruple mutants prevents increased lipid peroxidation in the vte2 background and restores pathogen resistance to wild-type levels. Therefore, the tocopherol biosynthetic pathway positively influences salicylic acid accumulation and guarantees effective basal resistance of Arabidopsis against compatible P. syringae, possibly by protecting leaves from the pathogen-induced oxidation of trienoic fatty acid-containing lipids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据