4.8 Article

Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence

期刊

PLANT JOURNAL
卷 101, 期 2, 页码 455-472

出版社

WILEY
DOI: 10.1111/tpj.14538

关键词

Prunus dulcis; Prunus persica; genome sequence; variability; divergence; indels; transposable elements; crop evolution; seed bitterness

资金

  1. Spanish Ministry of Economy and Competitiveness (MINECO/FEDER) [AGL2012-40228-C02-01, AGL2015-68329-R, AGL2016-78992-R, RTA2015-00050-00-00]
  2. Severo Ochoa Program for Centres of Excellence in RD [201-2019 SEV-2015-0533]
  3. CERCA Programme-Generalitat de Catalunya
  4. Waite Research Institute of the University of Adelaide
  5. Spanish Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) [RTA-2014-00062]

向作者/读者索取更多资源

We sequenced the genome of the highly heterozygous almond Prunus dulcis cv. Texas combining short- and long-read sequencing. We obtained a genome assembly totaling 227.6 Mb of the estimated almond genome size of 238 Mb, of which 91% is anchored to eight pseudomolecules corresponding to its haploid chromosome complement, and annotated 27 969 protein-coding genes and 6747 non-coding transcripts. By phylogenomic comparison with the genomes of 16 additional close and distant species we estimated that almond and peach (Prunus persica) diverged around 5.88 million years ago. These two genomes are highly syntenic and show a high degree of sequence conservation (20 nucleotide substitutions per kb). However, they also exhibit a high number of presence/absence variants, many attributable to the movement of transposable elements (TEs). Transposable elements have generated an important number of presence/absence variants between almond and peach, and we show that the recent history of TE movement seems markedly different between them. Transposable elements may also be at the origin of important phenotypic differences between both species, and in particular for the sweet kernel phenotype, a key agronomic and domestication character for almond. Here we show that in sweet almond cultivars, highly methylated TE insertions surround a gene involved in the biosynthesis of amygdalin, whose reduced expression has been correlated with the sweet almond phenotype. Altogether, our results suggest a key role of TEs in the recent history and diversification of almond and its close relative peach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据