4.8 Article

Genetic basis of kernel nutritional traits during maize domestication and improvement

期刊

PLANT JOURNAL
卷 101, 期 2, 页码 278-292

出版社

WILEY
DOI: 10.1111/tpj.14539

关键词

Oil; Carotenoid; Domestication and improvement; Genetic basis; Selection

资金

  1. National Key Research and Development Program of China [2016YFD0100503]
  2. National Natural Science Foundation of China [31421005, 31722039, 31361140362]

向作者/读者索取更多资源

The nutritional traits of maize kernels are important for human and animal nutrition, and these traits have undergone selection to meet the diverse nutritional needs of humans. However, our knowledge of the genetic basis of selecting for kernel nutritional traits is limited. Here, we identified both single and epistatic quantitative trait loci (QTLs) that contributed to the differences of oil and carotenoid traits between maize and teosinte. Over half of teosinte alleles of single QTLs increased the values of the detected oil and carotenoid traits. Based on the pleiotropism or linkage information of the identified single QTLs, we constructed a trait-locus network to help clarify the genetic basis of correlations among oil and carotenoid traits. Furthermore, the selection features and evolutionary trajectories of the genes or loci underlying variations in oil and carotenoid traits revealed that these nutritional traits produced diverse selection events during maize domestication and improvement. To illustrate more, a mutator distance-relative transposable element (TE) in intron 1 of DXS2, which encoded a rate-limiting enzyme in the methylerythritol phosphate pathway, was identified to increase carotenoid biosynthesis by enhancing DXS2 expression. This TE occurs in the grass teosinte, and has been found to have undergone selection during maize domestication and improvement, and is almost fixed in yellow maize. Our findings not only provide important insights into evolutionary changes in nutritional traits, but also highlight the feasibility of reintroducing back into commercial agricultural germplasm those nutritionally important genes hidden in wild relatives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据