4.4 Article

Verification of the global gyrokinetic stellarator code XGC-S for linear ion temperature gradient driven modes

期刊

PHYSICS OF PLASMAS
卷 26, 期 8, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5109259

关键词

-

资金

  1. Princeton University [DE-AC02-09CH11466]
  2. National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility [DE-AC02-05CH11231]

向作者/读者索取更多资源

XGC (X-point Gyrokinetic Code) is a whole-volume, total-f gyrokinetic particle-in-cell code developed for modeling tokamaks. In recent work, XGC has been extended to model more general 3D toroidal magnetic configurations, such as stellarators. These improvements have resulted in the XGC-S version. In this paper, XGC-S is benchmarked in the reduced delta-f limit for linear electrostatic ion temperature gradient-driven microinstabilities, which can underlie turbulent transport in stellarators. An initial benchmark of XGC-S in tokamak geometry shows good agreement with the XGC1, ORB5, and global GENE codes. A benchmark between XGC-S and the EUTERPE global gyrokinetic code for stellarators has also been performed, this time in the geometry of the optimized stellarator Wendelstein 7-X. Good agreement has been found for the mode number spectrum, mode structure, and growth rate. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据