4.7 Article

BABA application improves soybean resistance to aphid through activation of phenylpropanoid metabolism and callose deposition

期刊

PEST MANAGEMENT SCIENCE
卷 76, 期 1, 页码 384-394

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/ps.5526

关键词

soybean aphid; beta-aminobutyric acid; phenylpropanoid pathway; isoflavone; lignin; callose

资金

  1. National Science and Technology Major Project [2016ZX08004-003]
  2. National Natural Science Foundation of China [31601321, 31871645]

向作者/读者索取更多资源

BACKGROUND Beta-aminobutyric acid (BABA) confer plant resistance to a broad spectrum of biotic and abiotic stresses. The soybean aphid (SBA), is native to eastern Asia and is a predominant insect pest of soybean. Both isoflavone and lignin pathway are important branches of the general phenylpropanoid pathway, which would be likely associated with resistance against soybean aphid. However, little is known about the role of the phenylpropanoid pathway in defense response to SBA as induced by BABA application. RESULTS The application of BABA effectively enhanced soybean resistance against Aphis glycines, the soybean aphid. Consistent with significantly increased content of isoflavones, especially genistein, the related biosynthetic genes were upregulated by use of BABA. Lignin, another important defense component against arthropods, accumulated at a high level and four lignin biosynthesis related genes were also activated. Additionally, BABA application augmented the expression of callose synthase genes and increased callose deposition in SBA-infested seedlings. In non-caged and caged tests, SBA numbers were significantly reduced in BABA-treated seedlings. CONCLUSION These results demonstrate that application of BABA has an obvious positive effect on soybean resistance to aphids, and this defense response partly depends on the potentiation of isoflavone biosynthesis and callose deposition. (c) 2019 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据