4.6 Article

Third-harmonic generation in multilayer Tin Diselenide under the influence of Fabry-Perot interference effects

期刊

OPTICS EXPRESS
卷 27, 期 20, 页码 28855-28865

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.27.028855

关键词

-

类别

资金

  1. Science and Engineering Research Board [ECR/2016/001591]

向作者/读者索取更多资源

Two-dimensional layered materials are in general known to exhibit strong layer dependent nonlinear optical response owing to the crystal symmetry and associated phase matching considerations. Here we report up-conversion of 1550 nm incident light using third-harmonic generation (THG) in multilayered tin di-selenide (SnSe2) and study its thickness dependence by simultaneously acquiring spatially-resolved images in the forward and backward propagation direction. We find good agreement between the experimental measurements and a coupled-wave equation model we have developed when including the effect of Fabry-Perot interference between the SnSe2 layer and the surrounding medium. We extract the magnitude of the third order electronic nonlinear optical susceptibility of SnSe2, for the first time to our knowledge, by comparing its nonlinear response with a glass substrate and find this to be similar to 1500 times higher than that of glass. We also study the polarization dependence and find good agreement with the expected angular dependence of nonlinear polarization considering the crystal symmetry of SnSe2. The large nonlinear optical susceptibility of multi-layer SnSe2 makes it a promising material for studying nonlinear optical effects. This work demonstrates that in addition to the large inherent nonlinear optical susceptibility, the high refractive index of these materials and optical absorption above the bandgap strongly influence the overall nonlinear optical response and its thickness dependence characteristics. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据