4.8 Article

PTPN3 suppresses lung cancer cell invasiveness by counteracting Src-mediated DAAM1 activation and actin polymerization

期刊

ONCOGENE
卷 38, 期 44, 页码 7002-7016

出版社

SPRINGERNATURE
DOI: 10.1038/s41388-019-0948-6

关键词

-

资金

  1. Ministry of Science and Technology of Taiwan [NSC102-2311-B-001-027-MY3]
  2. Academia Sinica

向作者/读者索取更多资源

Cancer cell migration plays a crucial role during the metastatic process. Reversible tyrosine phosphorylation by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) have been implicated in the regulation of cancer cell migration and invasion. However, the underlying mechanisms have not been fully elucidated. Here, we show that depletion of the FERM and PDZ domain-containing protein tyrosine phosphatase PTPN3 enhances lung cancer cell migration/invasion and metastasis by promoting actin filament assembly and focal adhesion dynamics. We further identified Src and DAAM1 (dishevelled associated activator of morphogenesis 1) as interactors of PTPN3. DAAM1 is a formin-like protein involved in the regulation of actin cytoskeletal remodeling. PTPN3 inhibits Src activity and Src-mediated phosphorylation of Tyr652 on DAAM1. The tyrosine phosphorylation of DAAM1 is essential for DAAM1 homodimer formation and actin polymerization. Ectopic expression of a DAAM1 phosphodeficient mutant inhibited F-actin assembly and suppressed lung cancer cell migration and invasion. Our findings reveal a novel mechanism by which reversible tyrosine phosphorylation of DAAM1 by Src and PTPN3 regulates actin dynamics and lung cancer invasiveness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据