4.8 Article

Exploration of intramolecular split G-quadruplex and its analytical applications

期刊

NUCLEIC ACIDS RESEARCH
卷 47, 期 18, 页码 9502-9510

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkz749

关键词

-

资金

  1. National Natural Science Foundation of China [21427811]
  2. National Key Research & Development Plan Grant [21427811, 2016YFA0203200]

向作者/读者索取更多资源

Distinct from intermolecular split G-quadruplex (Inter-SG), intramolecular split G-quadruplex (Intra-SG) which could be generated in a DNA spacer-inserted G-quadruplex strand has not been systematically explored. Not only is it essential for the purpose of simplicity of DNA-based bioanalytical applications, but also it will give us hints how to design split G-quadruplex-based system. Herein, comprehensive information is provided about influences of spacer length and split mode on the formation of Intra-SG, how to adjust its thermodynamic stability, and selection of optimal Intra-SG for bioanalysis. For instances, non-classical Intra-SG (e.g. 2:10, 4:8 and 5:7) displays lower stability than classical split strands (3:9, 6:6 and 9:3), which is closely related to integrity of consecutive guanine tract; as compared to regular Intra-SG structures, single-thymine capped ones have reduced melting temperature, providing an effective approach to adjustment of stability. It is believed that the disclosed rules in this study will contribute to the effective application of split G-quadruplex in the field of DNA technology in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据